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Abstract

XGIOTTO [5] is a domain specific language for the implementation of embedded soft-
ware applications with hard temporal constraints. The language is an extension of
the original GIOTTO language [6]. In this report we present theXGIOTTO tool chain,
composed of the compiler and a specialized virtual machine, Embedded Virtual Ma-
chine (EVM). The compiler checks for determinism (absence of races) and time safety
(schedulability within logical execution times) and generates code for EVM. The EVM
integrates an event filter (which handles aperiodic asynchronous events and event scop-
ing introduced in [5]) and a modified Embedded Machine [7]. The report presents the
instruction set and the operational semantics of the virtual machine. The report also
presents event calculus which is used to extend expressiveness ofXGIOTTO. The re-
port concludes with a case study of implementing an automotive engine controller.



Chapter 1

Introduction

Real-time systems for embedded applications are characterized by limited memory,
distributed nodes, interprocess communication, fast context switches and concurrency [1].
However the most important features of such systems arepredictability and timing.
The execution of a safety critical system must be predictable and the evaluation of a
task should be available when it is due (neither before the deadline nor after). Several
programming paradigm has been used for implementing real-time controllers. In [2]
real-time systems programming has been divided into three categories: scheduled, syn-
chronous and timed. The first approach is the traditional scheduling based approach [3]
where each task is assigned a priority. The second approach is programming with syn-
chrony assumption [4] where all tasks are assumed to execute in logical zero time.
In [5] it has been argued that while the first approach causes non-determinism making
program verification difficult, the second approach is not suitable for applications with
non-negligible task execution and distributed computing.
The third programming approach assumes that each task is associated with aLogical
Execution Time(LET) [5, 6]. When a task is released on a platform its correspond-
ing LET is specified by a termination event. The task output is available only when
the termination event occurs. Even if the task completes its execution before the ter-
mination event arrives, the task output is not released. A trace of the execution is
time-safeif all tasks released along the trace completes their execution before the ar-
rival of the respective termination event. A program isschedulableif all the traces are
time-safe. The LET model makes the program execution time-deterministic (no jitter)
and value-deterministic (no race conditions) and thus make program verification and
analyses easier than the traditional scheduling model. Details about the LET model
and corresponding advantages in using LET model has been discussed in [5, 6, 7, 2, 8].
The LET programming model has been studied and implemented on different plat-
forms. In [6] we present GIOTTO, a time-triggered version of the LET programming
model. Our first implementation [9] was done on top of a conventional real-time oper-
ating system (Figure 1.1.A) like Osek [10] and HelyOS [11]. By using a programming
paradigm where timing and functionality are separated [6, 7], we were able to focus on
the compiler and the E Machine implementations leaving the platform specific prob-
lems to the real-time operating systems (RTOS). The E Machine (or the Embedded
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Machine) [7] is the virtual machine on which GIOTTO was implemented. In [12] we
extended the previous implementation by introducing the E Machine in the RTOS itself
(Figure 1.1.B) in order to gain flexibility and to reduce the overhead of the operating
system. In this paper we present another approach (Figure 1.1.C) for implementing the
LET programming model, by integrating the E Machine directly into the instruction
set of the running CPU. Since we are not able to produce a silicon for the associated
high cost and our limitation of time, we choose to modify an instruction set simulator
to implement a modified E Machine instructions. For its simplicity and popularity, the
Java Virtual Machine [13] was chosen.

Figure 1.1: Implementing the LET programming model

XGIOTTO [5] is a high-level programming language for control applications. GIOTTO

is the predecessor ofXGIOTTO. While GIOTTO can express only time-triggered sys-
tems, XGIOTTO handles aperiodic, asynchronous events and hence can implement
event-triggered applications. Besides,XGIOTTO introduces a new approach based on
the notion ofevent scoping, which allows us to encode animplicit environment as-
sumption inXGIOTTO programs. Event scoping temporarily disables event monitoring
for a subset of the observed events. In this way, the environment assumption is reflected
by the control structure of the program itself. AnXGIOTTO program is compiled and
checked whether the program is free of races and is schedulable. Next the code gener-
ator produces machine level code which can run on a virtual machine. GIOTTO runs on
the virtual machine E Machine. However the E machine is not capable of handling the
event scoping and functionality code ofXGIOTTO. This paper discusses the Embedded
Virtual Machine (EVM) which implements an event filter (for event scoping) and a
modified E Machine which runs parallel to a scheduler. In the future the scheduler will
be integrated with the EVM. The code (or the instruction set) for the EVM is called
EVM code.
In the next chapter a brief discussion ofXGIOTTO and its notion of event scoping has
been presented. This is followed by the description of an event calculus. Event calcu-
lus complements the notion of event scoping introduced in [5]. The chapter concludes
by an example of anXGIOTTO program and the corresponding EVM code. Chapter 3
introduces the instruction set for EVM and details the semantics of the operation of the
EVM. Chapter 4 presents the compile- and run-time implementation of theXGIOTTO

tool chain and presents the possible future extensions. Chapter 5 presents the imple-
mentation of a controller for an automobile engine inXGIOTTO. Chapter 6 concludes
the report.
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Chapter 2

xGiotto

XGIOTTO (like its predecessor GIOTTO) is built around the notion of LET model of
task execution. In GIOTTO an event is always a clock tick and thus the release and
termination of a task is possible only at clock ticks. HoweverXGIOTTO being event-
triggered an event can be either a clock tick or an arbitrary sensor interrupt. GIOTTO

does not allow simultaneous execution of multiple instances of the same task; however
XGIOTTO does not have this limitation. An event inXGIOTTO has two possible actions:
invoking a reaction block or terminating a reaction block. Areaction blockdefines a
set of triggers and a set of tasks and has a termination event. Atrigger maps an event
to a set of reaction blocks such that when the event occurs the reaction blocks are
activated. Atask is a functional code similar to a procedure. When a reaction block
is activatedit enables the triggers and releases the tasks. When a reaction block is
terminated(on arrival of its termination event) the associated tasks are also terminated.
Thus the active-time-span of a reaction block denotes the LET for the tasks released
by it. The execution of a reaction block is done synchronously, i.e. executed in logical
zero time. However the execution may take place at different time instants if there are
nested reaction blocks.
The events associated with a reaction block are the events of the triggers and the ter-
mination event of the block. This is the event scope for the reaction block. When a
reaction is invoked (one of the triggers is triggered) the called reaction becomes the ac-
tive scope and the callee reaction (the passive scope) is pushed onto a stack. However
as parallel invocation of reactions are allowed, a tree of scopes may exists at any instant
of the execution. The leaves of the tree are theactive scopesand the non-leaf nodes
are thepassive scopes. An event in passive scope can be handled as follows: ignored,
remembered or acted upon as soon as possible; they are specified by the keywords:
forget , remember , andasap . If an event is remembered, the associated action is
taken when the corresponding scope becomes active again. If anasap event occurs
the trigger queues of the sub-tree rooted by the scope is emptied so new trigger action
can take place. The scopes are not preempted immediately to avoid unsafe termination
of tasks.

3



Language Constructs.

An XGIOTTO program consists of a set of portsP, eventsE, tasksT, and reaction
blocksR. A port declarationfor a port (or a program variable) consists of a name, a
fixed type and an initial value. Anevent declarationfor an event consists of an event
name, type, and the external interrupt triggering the event. The eventstime andnow
are predefined:time corresponds to the system clock whilenow is a placeholder for
current event and cannot be used as a termination event for reaction blocks. Multi-
ple events can be combined to express environment assumptions in an efficient and
succinct manner in anXGIOTTO program. However it is assumed that no two events
can occur simultaneously. The expressiveness of event has been extended by an event
calculus presented below. Atask declarationfor a task consists of a task name, input
parameters, output parameters and local variables. The task body is a standard sequen-
tial program. Areaction block declarationfor a reaction block consists of a name,
a body and an termination event parameter. The body of the reaction block consists
of trigger statements, release statements and sequential reaction statements. The con-
struct for trigger statement iswhen [e] r where event,e∈ E and r is a reaction.
The statement denotes that whene arrives the reactionr is invoked. The reactionr
may be a single reaction block or multiple reaction blocks composed in parallel. The
types of parallelism are:wait - andasap -parallelism. If a scope bound inasap -
parallelism terminates, the triggers of the sibling scopes and the sub-tree rooted by
them are removed. If a scope bound inwait -parallelism terminates, no further action
is taken. The construct forrelease statements isrelease t(in)(out) . It re-
leases a new task instance for taskt . When the task is released the values of input ports
in are copied to the local ports of the task instance and at task termination the output
portsout are updated. The trigger and release statements can be made conditional by
attaching a predicate on the ports. If the predicate is true at the instance of reaction
block invocation, the corresponding statement is executed.

xGiotto Analysis.

The XGIOTTO compiler performs three analyses onXGIOTTO programs. Race con-
dition check and resource size prediction areplatform independentanalyses while
schedulability is aplatform dependentanalyses. A program is said to haverace condi-
tion if a port is updated by two or more terminating task instances at the same instance.
Race conditions are undesirable as they give rise to non-determinism in the program
execution. At present theXGIOTTO compiler checks for race by a reachability algo-
rithm which is PSPACE-complete. Theresource sizeanalysis predicts the memory
requirements for executing the program on a real-time platform. A conservative bound
can be found in time linear to the size of the program. Schedulability for anXGIOTTO

program checks whether a given program is schedulable or not with respect to a real-
time platform (given by theworst-case-execution-timemapping of the tasks to the plat-
form). Schedulability of anXGIOTTO program can be defined as a two-player safety
game between the system and the environment. The program is schedulable if in this
game the scheduler has a strategy to avoid time-safety violations forever. In theory the
schedulability problem is complete forEXPTIME. Refer [5] for details of the analyses.
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2.1 Event Calculus

The event calculus defines two types of events: atomic events and compound events.
An atomic eventis an event which is triggered by a sensor interrupt. For the event
declaratione AT sensor interrupt , e is an atomic event triggered by an exter-
nal interruptsensor interrupt . A compound eventis an expression on atomic
events and compound events using the sequence operator (·) and either operator (∨) as
follows:

E ::= e | E ·E | E∨E (2.1)

whereE is an compound event ande is an atomic event. Thesequenceoperator de-
notes that the associated action takes place only if the events occur serially in the order
defined. Theeitheroperator denotes that either of the events has to occur for triggering
the associated action. The order of precedence for evaluating a compound event is:
brackets, sequence operator and either operator. A concrete compound eventE can be
expressed as a finite state machine whose edges are labelled with atomic events and
the compound event is enabled if an accepting state of the state machine is reached.
If a concrete compound event consists of only an atomic event then the corresponding
state machine consists of one initial state, one accepting state and one transition from
the initial state to the accepting state labelled by the atomic event. The event calculus
is closed under the sequence and either operators and can be proved by construction.
In the Figure 2.1 eventsA, B andC are atomic events triggered by interrupt1, inter-
rupt 2 and interrupt3 respectively.

Figure 2.1: Event Calculus

Three derived operators are also defined in the event calculus for succinct representa-
tion. They are the repetition operator (*), in-any-order operator (#) and interleaving
operator (:). Thus the extended calculus is

E ::= e | E ·E | E∨E | k∗E | E#E | k1∗e : k2∗e (2.2)

wherek,k1,k2 are integer constants. Therepetitionoperator denotes that an event oc-
curs fork times and can be expressed by applying the sequence operatork times. The
in-any-orderoperator denotes that the two events should occur but in any order and can
be expressed with the sequence and either operators. ThusE1#E2 = E1 ·E2∨E2 ·E1.
The interleavingoperator denotes the interleaving ofk1 instances of first atomic event
andk2 instances of second atomic event. Thus for the Figure 2.1 the compound event
2*A : 2*B denotes any one of the sequences{AABB, ABAB, BABA, BBAA}.
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2.2 Implementing an answering machine

We present a simple automated email and phone answering machine. The system
replies to an email or answers the phone as follows: if either a phone or an email
arrives when the system is idle the corresponding task is performed; if an email ar-
rives during answering the phone call or reading another email it is remembered and
is handled as soon as the phone call has been answered or the current email has been
read; however if a phone call arrives when answering an email or a phone call, the new
phone call is ignored.
The XGIOTTO code for implementing this machine has been shown in the Figure 2.2.
The program implements two tasks, one for reading the emails and one for answering
the phone. The input and output ports, and the body of the tasks have been omitted
for simplicity. The code consists of two trigger statements: one for theemail event
and the other for thephone event. When an email arrives, anemail event is raised
and the taskreadmail is released. Thereadmail task processes the email and
terminates at the arrival of thedone event. Similarly at the arrival of a phone call
— signaled by thephone event — the taskanswerphone answers the phone and
terminates the execution when the caller hangs up (eventhangup ). The desired event
handling is embedded by using the keywordsremember with email andforget
with phone . Thus eventemail will be remembered if the system is busy and would
be handled as soon as the system becomes idle; however if an eventphone arrives
when the system is busy the event is ignored.

task readmail /*action*/
task answerphone /*action*/

react {
whenever remember [email]

react {
release readmail()();

} until [done];
whenever forget [phone]

react {
release answerphone()();

} until [hangup];
}

Figure 2.2: xGiotto Code

Task Table:
0: return //readmail function
1: return //answerphone function

Code
0: enterscope //main reaction
1: when repeat, remember,

[email], @5, [done]
2: when repeat, forget,

[phone], @8, [hangup]
3: exitscope
4: enterscope //reaction to email
5: release #0 //task readmail
6: exitscope
7: enterscope //reaction to phone
8: release #1 //task answerphone
9: exitscope

Figure 2.3: EVM Code

TheXGIOTTO compiler generates code for the EVM. The EVM is a mediator between
physical events and software processes: it executes EVM code which reacts to events
and handles software processes. The EVM code for theXGIOTTO program presented
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in Figure 2.2 is presented in Figure 2.3. The EVM code begins with a table of all the
tasks and their functionality code. For simplicity we have omitted the functionality
code and the EVM code for the two tasks is composed only of return statements. The
EVM code for the reactions follows the task table. The instruction at address0 starts
the execution of the main (starting) reaction. The instructionenterscope instructs
the EVM to allocate a new scope for the reaction. The EVM interpreter (Algorithm 5)
will then execute all instructions until the instructionexitscope is executed. The
when instructions at address1 and2 declares two reaction invocations; one for the
email event and one for thephone event. Therepeat keyword implies that the
trigger is to be repeated, i.e., belongs to awhenever statement. The[email] and
[phone] specify the triggering event, followed by the address of the corresponding
reaction code to be invoked. The last parameter of the instruction specifies the termina-
tion event. Therelease instruction releases a task; the parameter of the instruction
specifies the index of the task in the task table. Thus the instruction at address5 re-
leases the task at index0, i.e. the taskreadmail .
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Chapter 3

Embedded Virtual Machine

The Embedded Virtual Machine is a virtual machine, similar to the E Machine, that me-
diates between the physical and the software process of an embedded system through
a control program. While E Machine interprets E code, EVM interprets EVM code.
An EVM program consists of (1) a setP of program ports, (2) a setE of events, (3) a
setT of task declarations, and (4) a setA of addresses and for each address a finite se-
quence of instructions. Besides interpreting the EVM instructions (described below),
the EVM keeps a dynamical data structure of theevent scopesdefined in Section 2.
The data structure is implemented as a tree of event scopes where each event scope
stores: the termination event of the scope, a trigger queue, a set of released tasks, the
mode of parallel invocation, i.e.,asap -, or wait -parallel, and a link to all its children
scopes. For efficiency, all active scopes, i.e., the leaves of the event scope tree, are
linked together.

3.1 Instruction Set

The instruction set of the EVM is an augmented version of the Java Virtual Machine
(JVM) instruction set. A list of the added instructions with the opcode in the paren-
thesis is provided below. The operational semantics of each instruction is given by the
interpreter of Algorithm 5. For the full instruction set we refer to [13].
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(opcode) instruction synopsis

(0xE3) trigger inserts a trigger in the trigger queue
Q of the actual event scope

(0xE0) release releases a task to the task instances
setT of the actual event scope

(0xE9) getport writes on the stack the value of a port
(0xEA) getevent writes on the stack the value of an event
(0xEB) putport writes the value on the stack to a port
(0xE4) enterscope generates a new scope, and initializes the trigger queue

and the set of task instances:Q = /0, T = /0
(0xE5) exitscope returns from the scope

3.2 Operational Semantics

The execution of anXGIOTTO program yields a possibly infinite sequence of program
configurations. A (program) configuration is the current state of the program execution
and consists of a program counter, values of the ports, tree of scopes and a stack.
Formally aprogram configurationis a tuple(Σ,∆,PC,S,SP), whereΣ is a function
from the port setP to values,∆ is a labeled tree, where each node is labeled by a scope,
PC is the program counter,S is a stack, andSPis the stack pointer. Ascopeis a tuple
(U,Q,T,α), whereU is the termination event instance,Q is a queue of triggers,T
is a set of task instances, andα ∈ {asap,wait} is the parallelism of the scope (with
respect to its siblings). Anevent instanceis a pairi = (e,s, f ), wheree is ancompound
event, s is a state of the automatone, and f : f ∈ {A,R,F} is the event qualifier, with
A,R,F denotingasap , remember , andforget . An event instance isenabledwhen
s is an accepting state of the compound event state machinee. Given an atomic event
e′ the operationnext(i,e′) = i′ wherei′ = (e,s′, f ) such that(s,s′) is a transition ine
and labeled withe′; otherwisei′ = (e,s, f ). The operationreset(i) resetss to the initial
state of the state machinee. A trigger queueis a queue of triggers. Atrigger is a tuple
(i,m, p, r), wherei is an event instance,m : m = {when,whenever} is the repetition
parameter,p ∈ {||,&& } is the parallel operator (|| denotesasap - and && denotes
wait -parallelism) andr is a reaction, i.e., a set of reaction blocks to be invoked by the
enabled event instance. A task instance consists of the tuple(t, po,spi ) which implies
that the portspo are updated (at task termination) by the evaluation of the taskt on the
state of portspi at the instance of invocation (given byspi ).
A pseudo code description of the EVM is provided here. Algorithm 1 shows the main
loop of the machine. Initially the active scope corresponds to the starting scope of
the EVM code program. Whenever an event occurs, the trigger-related interrupts are
disabled. Next three procedures:UpdateEvent, TerminateScopeandUpdateScopeare
invoked in sequence. The EVM runtime system uses a discrete scheduler, i.e., the
scheduler is invoked only at a certain periodic event,tick . If the input event corre-
sponds totick the scheduler is invoked.
The procedureUpdateEvent(Algorithm 2) updates the counter for the events in the
event filter in the following way: for each event instancei = (e,s, f ), if either (1) f ∈
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{A,R} or (2) f = F and the event instance occurs in a leaf scope, then the event instance
i is updated bynext (i, e′). If the updated event instancei is enabled and the form of
the event instance isasap then the trigger queues of all descendent scopes are emptied.

Algorithm 1: EVM-main Algorithm 2: UpdateEvent
loop

wait for inpute′
disable trigger-related interrupts
UpdateEventCounter(EventFilter,e′)
TerminateScope(EventFilter,e′)
ReactScope(EventFilter,e′)
enable trigger-related interrupts
if e′ is tick eventthen

invoke system scheduler onActive-
TaskSet

end if
end loop

for all scopess∈ EventFilter do
for all event instancesi ∈ s do

if ( f = A,R)∨ (( f = F)∧ (s is a leaf))
then

next(i, e′);
if (i is enabled) ∧( f = A) then

RemoveTriggersfrom sub-tree
rooted bys

end if
end if

end for
end for

Next the procedureTerminateScope(Algorithm 3) is invoked. The procedure termi-
nates all terminating scopes and terminates the tasks that are released in the scope. A
scope isterminatingif it is a leaf scope and its terminating event instance is enabled.
First, a terminating scope is terminated by removing the corresponding node. Sec-
ond, for each task instance(t, po,spi ) of the removed scope, the port values ofpo in
Σ are updated by applying taskt to the port values ofpi given byspi . Third, if the
removed scope isasap -parallel, then the trigger queues of all its sibling scopes and
their descendants are emptied. The procedure is iterated until there are no terminating
reactions.

Algorithm 3: TerminateScope Algorithm 4: ReactScope
while there exists a terminating scope
s∈EventFilterdo

terminate the tasks released ins
terminates
if s is bound byasap parallelismthen

RemoveTriggersfrom the siblings ofs
and the scopes in the sub-tree rooted by
the siblings

end if
end while

while there is a reacting scopes∈ Event-
Filter do

the enabled trigger be(i,m, p, r)
if m= whenever then

reset(i)
trigger is reinserted in the trigger
queue

end if
for all reaction blockr ′ in r do

create a new scopes′ for r ′
Interpreter(address ofr ′)

end for
end while

Next the procedureReactScope(Algorithm 4) invokes the enabled triggers for each
reacting scope. A scope isreacting if it is a leaf scope and its trigger queue contains
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a trigger with an enabled invoking event instancei; this is called aninvokedtrigger.
Let the first invoked trigger beg = (i,m, p, r), then a set of scopes are added to the
reacting scope as children — one for each reaction block ofr. Moreover, the triggerg
is removed from the queue, and ifm= whenever, then the new trigger(reset(i),m, p, r)
is appended at the end of the trigger queue.
The scope of each new node is computed by executing the corresponding EVM code
at the address given byr by the pseudo-code shown in Algorithm 5: the termination
event instance of the new scope is determined by the until event of the corresponding
reaction block; the trigger queue of the new scope contains one trigger for eachwhen
andwhenever statement in the order of the statements; the ready set of the new scope
contains one task instance for eachrelease statement where the values of the task
input ports are taken fromΣ; and the parallelism of the new scope is determined by
whether the invoked reaction blocks are composed withasap - or wait -parallelism.
The conditionals associated with the trigger and the release statements are evaluated
with standard JVM instructions and omitted here for simplicity. The proceduresPort-
ValueandEventValueaccess the memory location of a port and an event respectively.
The procedure shown in Algorithm 4 is repeated until there exists no reacting scopes.
The handling of an input event ends here and EVM starts waiting for the next event.
However if the last event is atick event, the system scheduler is invoked and a new
task starts its execution until the nexttick event occurs.

Algorithm 5: Interpreter
while PC6= ⊥ do

op := GetInstruction(PC)
if op= trigger(i,m, p, r) then

Q := Q∪ (i,m, p, r)
else ifop= release(t) then

T := T ∪ t
else ifop= getport(p,o) then

s := S[SP]; S[SP] := PortValue(p,o+s);
else ifop= putport(p,o) then

s := S[SP]; v := S[SP−1];
PortValue(p,o+s) := v; SP:= SP−2

else ifop= getevent(e,o) then
s := S[SP]; S[SP] := EventValue(e,o+s);

else ifop= enterscope then
Q := /0; T := /0;

else ifop= exitscope then
PC:=⊥

else
Java code interpreter

end if
end while
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Chapter 4

EVM code generation and
run-time implementation

This section discusses theXGIOTTO tool chain comprising the compiler and the EVM
run-time implementation. The prototype implementation has been shown in Figure 4.1.
The compiler checks the syntactic requirements and perform the three analyses de-
scribed earlier and the run-time implementation executes the program with the event
filter, the modified E machine and the scheduler. The sections concludes with an dis-
cussion on the possible extensions of theXGIOTTO tool chain.

4.1 Compile-time implementation.

An application is specified using theXGIOTTO program. TheXGIOTTO compiler (Fig-
ure 4.1) checks for the syntactic correctness and then checks for presence of races; if
race exists the trace of event leading to the race is provided. If no race is detected
the time safety check is carried out relative to the worst-case-execution-time (WCET)
mapping of the tasks and the real time platform. If the program is not schedulable, the
information is passed for further iteration; otherwise a scheduling strategy is provided
to the run-time system. The code generator produces code which can be divided into
two parts,reaction codeandtask code. Reaction code is essentially augmented JVM
instructions, whereas task code is JVM instructions.

4.2 Run-time Implementation.

The XGIOTTO run-time environment (Figure 4.1) consists of three interacting com-
ponents: the event filter, the modified E machine, and the scheduler. Theevent filter
implements the event-scoping mechanism and presents the filtered events to the E ma-
chine. The implementation of the event filter is same as discussed in the last section.
At run-time, the occurrence of an event is processed by the event filter. The event fil-
ter computes the event transition and the termination transitions on the tree of event

12



Figure 4.1: Implementation

scopes and gives to the E machine a set of EVM code addresses, which correspond
to the invoked reaction blocks. The EVM interprets the EVM code, thus perform-
ing the reaction transitions. The EVM code instructions may release new tasks to the
scheduler and enable new triggers. When all invoked reactions have been processed
by the machine, the system scheduler chooses a task to execute from the ready set of
the active event scopes, and whenever such a task completes, the EVM is notified. In
addition, the EVM monitors the running tasks by detecting task overruns (time-safety
violations). If a task overrun is detected (i.e. if a task termination event arrives before
the task completes), a run-time exception is generated. The platform interacts with
the environment through actuators and sensors. The actuators are driven by the task
outputs and the sensors generateatomicevents (interrupts), which are handled by the
event filter. The prototype is implemented in Java and is able to run anyXGIOTTO

program and to interprets a subset of the JVM bytecode [13].
OSEKWorks is a real time platform from WindRiver which implements the OSEK
standard [10] for embedded applications in the domain of automotive and industrial
automation. Currently work is under progress to port the EVM on OSEKWorks and
implement the AFR controller (discussed in the next section).

4.3 Extensions

XGIOTTO is being integrated with Metropolis [14]. Metropolis is a unified framework
which allows the simulation and exploration of different runtime platforms. By incor-
poratingXGIOTTO in the metropolis framework we allow the flexibility of studying and
exploring the embedded software design. TheXGIOTTO compiler generates Metropo-
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lis meta-model descriptions (Figure 4.1) of the reactivity and of the tasks. Given a
description of the platform and its environment, Metropolis is capable of analyzing the
platform and generates a worst-case-execution-time mapping for the tasks.
The Ptolemy project [15] studies modeling, simulation, and design of concurrent, real-
time, embedded systems. It focuses on the use of well-defined models of computa-
tion and how heterogeneous mixture of such models of computations can be used for
modelling and analyzing embedded systems. In the future we are interested in imple-
menting anXGIOTTO domain in Ptolemy to further investigate the embedded system
applications design and development.
Simulink is a well known simulation and code-generation environment for control ap-
plications in automotive and avionics domain. Simulink is used in association with
code generators for real-time systems like Real-Time Workshop [16]. In the future we
would like to explore the integration ofXGIOTTO and Simulink as has been done in
Giotto-Simulink translator [17].

14



Chapter 5

Case Study

The case study presents a problem from the automotive industry. While an engine is in
motion the engine-fuel system needs to inject fuel into the combustion engine with the
optimal amount of air [18]. This is commonly known as air-fuel ratio (AFR) control
in the automotive domain. The operation is very sensitive to the timing of the AFR
controller. The AFR controller updates the fuel-injectors (actuators) with the amount
of fuel to be injected in the next engine cycle. The fuel is sprayed to the intake ports
once the valves are closed and with enough time allowance so that the mixture forms
before the valves open. The valve timing depends upon the engine speed; this forces the
AFR controller to issue updates at aperiodic time intervals. The right half of Figure 5.1
shows the AFR controller. There are two shafts in the engine: crank and cam shaft. For
every rotation in the wheel, the cam rotates once and crank rotates twice. There is only
one teeth in the cam shaft. There are six teeth slots in the crank. However one slot is left
empty to synchronize with the cam shaft. On receiving signal (which is synchronized
with the arrival of the teeth), each injector injects a certain amount of precalculated
amount of fuel. For each engine cycle an injector sprays once. Initially we assume
that the engine is at top dead center (as illustrated in Figure 5.1). At this point the
AFR controller computes how much fuel is needed for the cylinder in the next engine
cycle – and the amount of fuel each injector needs to inject. In this discussion the
injector response time and other non-linear effects have been omitted. The cam shaft
pulse is used as a reference to obtain the numbering of the crank shaft teeth (which
we have chosen to be5 + 1 missing) as shown in the figure. For our case only three
injectors have been considered; however they can be increased to any number allowed
by the dynamics of the system. The crank shaft teeth is converted to pulses via the
signal conditioning circuitry. The i-th injector injects at the i-th teeth pulse as shown.
When the crank shaft reaches the end of the engine cycle, denoted by tooth number
10, thecalcInjPar routine is initiated which calculates the fueling parameters for the
next engine cycle. The computation has to be completed before the arrival of the tooth
number 1. At this instance the injection for first injector is initiated. The fuel parameter
is actually scaled to the length of a pulse proportional to the mass to be injected. Thus
the fuel injection can be represented by a pulse of width proportional to the mass of
fuel to be injected by the respective injector.
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Figure 5.1: AFR Controller — Implementation

xGiotto Program

An XGIOTTO program that simulates the behavior of the controller has been shown in
Figure 5.2. The controller presented is used when the engine is warm, running in fourth
gear and the minimum speed of the system is 1000 rpm. This implies that between each
slot of crank shaft there is a minimum time gap of 5ms (one engine revolution every
60ms). The eventtick in the program denotes1 ms event. There are three fuel
portsf1, f2, f3 for the three injectors and are of type integer. The i-th fuel port is
updated with the mass of fuel to be injected for the i-th injector. There are three (one for
each injector) pulse ports and simulate the fuel injection. The portsp1, p2, p3 are
pulse ports and are boolean ports which are normally grounded (or reset). They are set
to high (ortrue ) for the time equal to the length of the pulse (i.e. the value stored in the
corresponding fuel port) to simulate the injection. In actual implementation the tasks
set andreset will correspond to the closing and opening of the valve for an injector.
The taskdec checks for the remaining length of the pulse; in real implementation it
will simulate the pulse generation technique to inject the required mass of fuel. The
controller starts with the signalsynch which is invoked at the synchronization of TDC
for the crank and cam shafts. At the signal, reaction modestart is invoked which
calls the reactioncontroller once for each revolution of the wheel and thus for the
arrival of every 10 teeth (whenever a teeth passes the TDC ateeth event is generated)
of the crank shaft. Oncecontroller is invoked, the taskCalcInjPar is released
to calculate the mass of fuel to be injected for each of the injector and updates the
three fuel portsf1 , f2 and f3 by the arrival of the next teeth. This implies that at
the worst case it takes 10ms for its computation (the toothless slot is included here)
and is expressed by the deadline[10ms : teeth] . At the arrival of the first tooth
on the cycle the three injectors (the three reaction blockschannel1, channel2,
channel3 ) are invoked in parallel. The reactionchannel i handles the injection of
the i-th injector. For the i-th injector, the injection should start at the arrival of the i-th
teeth; so the taskset sets the value of the pulse variable of the injector at the i-th
teeth. For the blockchannel2 an initial gap of a tooth is provided and thenset is
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program Air-Fuel-Ratio-Controller {

port
/* fuel ports */
int f1; int f2; int f3;
/* pulse ports */
bool p1; bool p2; bool p3;

event
int synch;
int stop;
int teeth;

task set () output (int o)
{ o = true; }

task reset (int i) output (int o)
{ if (i == 0) o = false; }

task dec (int i) output (int o)
{ if (i > 0) o = i - 1; }

task calcFuelInj ()
output (int f1, int f2, int f3)
{/* Fuel Parameter Computation */ }

react channel1() {
when [now]
{release set () (p1); } until [1time];
loop

react {release reset (f1) (p1);
release dec (f1) (f1);

} until [time]
end;

} until [int e]

react channel2() {
when [now] react {} until [5time : teeth];
when remember [5time : teeth] react
{release set () (p2); } until [time];

react {
loop react {release reset (f2) (p2);

release dec (f2) (f2);
} until [time];

end; }
} until [int e]

react channel3() {
when [now] react {} until [10time : 2teeth];
when remember [10time : 2teeth] react
{release set () (p2); } until [time];

react {
loop react {release reset (f3) (p3);

release dec (f3) (f3);
} until [time];

end; }
} until [int e]

react calcFuel() {
release calcFuelInj() (f1, f2, f3);

} until [int e]

react controller() {
when [now] react calcFuel()

until [10time : teeth];
when remember [teeth]

react channel1() until asap [50time : 9teeth] ||
react channel2() until asap [50time : 9teeth] ||
react channel3() until asap [50time : 9teeth];

} until [int e]

react start() {
when [now] react controller()

until remember [10teeth];
whenever remember [10teeth]

react controller() until remember [10teeth];
} until [int e]

{when [synch] react start() until asap [stop]; }

}

Figure 5.2: AFR Controller —XGIOTTO program

released on the pulse portp2 (with a LET of 1ms). Following this a loop is started
which repeats every ms and schedules tasksdec andreset . The implementation of
the controller on OSEK is currently under development.
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Chapter 6

Conclusion

In this report we presented the Embedded Virtual Machine. The EVM simplifies im-
plementing and porting ofXGIOTTO to any other RTOS. The virtual machine code is
simple enough to be ported to any RTOS. This is not the most optimal approach since
it involves the interpretation on top of the hosting RTOS. An optimal but complex solu-
tion would be to implement the EVM “bare bone” on the target platform, reducing the
overhead to the minimum. In this paper we propose a modified Java Virtual Machine
(JVM). However the concept can be applied to any other instruction set. Choosing the
JVM as a starting point for our investigation allowed us to have access to and be in-
spired by several different implementation of the original JVM, such as the JikesVM,
JamaicaVM, aJile and JBed to name a few.
In particular we were inspired by the leJOS [19] and TinyOS [20] systems. The
TinyOS system is targeted towards sensor-networks applications implemented in nesC
and leJOS is targeted towards implementing applications for the Lego Mindstorms.
Both the systems are characterized by their succinctness (15Kb for leJOS and 4Kb for
TinyOS) and are targeted to run on microprocessors with a very small memory footprint
(the Hitachi H8 for leJOS, and the Atmel AVR for TinyOS).
Moreover in this work we attempted to bring some of the threading functionality usu-
ally found in real-time operating system at the instruction level. This can be compared
to the introduction of object-oriented functionality (such as object instantiation) on the
JVM.
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